Pediatric Genomic Medicine

Neil Miller
Director of Informatics
Center for Pediatric Genomic Medicine
Children’s Mercy Hospital & Clinics
nmiller@cmh.edu
Children’s Mercy Hospital
Center for Pediatric Genomic Medicine

- Established Jan., 2011
 - Directed by Dr. Stephen Kingsmore

- Integrated with hospital practice
 - 25 physicians as primary points of contact representing every specialty within hospital
 - Clinical Genetics & Counseling
 - CMH Center for Bioethics

- Three application focuses
 - Exome sequencing
 - TaGSCAN CLIA lab test
 - STAT-seq Emergency Genome Sequencing
Single gene diseases are a proving ground for neonatal genomic medicine

- Variants are phenotypically deterministic
 - Disease \equiv mutation(s)
 - Interpretable

- 20 year experience with gene sequencing for diagnosis
 - CLIA/CAP laboratory guidelines and certification
 - ACMG reporting conventions for variants
 - FACMG medical geneticist physicians
 - FACMG laboratory director interpretation
 - Genetic counselors
Diagnostic Complexity in the NICU

• Admissions to NICU are unexpected
 – 5% of US newborns, genetic testing potentially relevant for as many as 30% of admissions

• Diagnosis must be rapid to guide clinical decisions
 – Usual tests take 8 weeks

• Genetic diseases **look similar** in neonates
 – 3,757 known single gene diseases
 – Early in disease progression = incomplete symptoms, non-classical presentation
 – Phenotypic overlap: diseases have similar clinical features
 – Genetic heterogeneity: several genes cause same “disease”
 – Poorly defined clinical heterogeneity
24-hour Medical Genome Sequencing

Clock

0.0

- Identify newborn who may benefit
- Parental consent, DNA sample
Brother and sister stillborn at 27 weeks gestation

- Presented with a complex set of abnormalities
- Very extensive post-mortem work-up did not give a diagnosis
- After the first baby died, the parents were told the disease was “sporadic” = would not recur
- The parents wanted answers
- They want to have another child
24-hour Medical Genome Sequencing

Clock

0.0
- Identify newborn who may benefit
- Parental consent, DNA sample

3.0
- Sonication/ PCR-free Library Prep
- Clinical finding entry: SSAGA

Decreased from 1 day to 3 hours
Problem: Physicians don’t know which tests to order
Solution: SSAGA - Symptom and Sign Assisted Genome Analysis Software

SSAGA also:
- Accelerates interpretation
- Limits secondary (incidental) findings

Software limits regions of genome where variants reported
SSAGA Symptom and Sign Entry Page

Search

Select one or more clinical presentation terms and click Search to see genes and diseases associated with those terms.

Ctrl-click to select multiple terms in each category or to de-select terms.

Clinical findings

Cardiovascular/Pulmonary
- cardiomyopathy
- chronic cough
- conduction disorder of heart
- congenital anomaly of lung

Constitutional/Metabolic
- Alpha-fetoprotein raised
- allergic state
- anorexia
- autoimmune state
- diffuse inflammation

Endo/GU/Renal
- advanced bone age
- ambiguous genitalia
- blood in urine
- congenital anomaly of the urinary system
- congenital malformation of genital organs

Gastrointestinal
- abdominal pain
- abnormal liver function
- achalasia
- anorectal anomaly
- bile duct proliferation

ID/Immuono/Heme
- allergic state
- anemia
- autoimmune state
- bacterial infectious disease
- bleeds easily

Neuro/Muscular/Development
- altered mental status / coma
- ataxia
- autistic disorder
- autonomic dysfunction
- cerebral calcifications

Derm
- alacrima
- alopecia
- angiokeratoma
- atrophic condition of skin
- blister of skin or mucosa

HEENT
- cherry red spot
- coarse features
- coloboma
- congenital anomaly of ear
- congenital anomaly of larynx

Skeletal/Growth
- advanced bone age
- arthritis
- bone pain
- congenital anomaly of hand
- congenital anomaly of skeletal bone

[Home Login (admin only)]
Brother and Sister’s Symptoms and Signs

<table>
<thead>
<tr>
<th>Cardiovascular/Pulmonary</th>
<th>Constitutional/Metabolic</th>
<th>Derm</th>
</tr>
</thead>
<tbody>
<tr>
<td>conduction disorder of heart</td>
<td>edema</td>
<td>hypopigmentation</td>
</tr>
<tr>
<td>congenital anomaly of lung</td>
<td>fever</td>
<td>keratosis</td>
</tr>
<tr>
<td>congenital heart disease</td>
<td>gout</td>
<td>nail finding</td>
</tr>
<tr>
<td>cyanosis</td>
<td>hydrops fetalis</td>
<td>papules</td>
</tr>
<tr>
<td>disorder of cardiac function</td>
<td>hyperammonemia</td>
<td>photosensitivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endo/GU/Renal</th>
<th>Gastrointestinal</th>
<th>HEENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>advanced bone age</td>
<td>abdominal pain</td>
<td>coloboma</td>
</tr>
<tr>
<td>ambiguous genitalia</td>
<td>abnormal liver function</td>
<td>congenital anomaly of ear</td>
</tr>
<tr>
<td>blood in urine</td>
<td>achalasia</td>
<td>congenital anomaly of larynx</td>
</tr>
<tr>
<td>congenital anomaly of the urinary system</td>
<td>anorectal anomaly</td>
<td>disorder of sclera</td>
</tr>
<tr>
<td>congenital malformation of genital organs</td>
<td>bile duct proliferation</td>
<td>dysmorphic facies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID/Immuno/Heme</th>
<th>Neuro/Muscular/Development</th>
<th>Skeletal/Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>allergic state</td>
<td>muscle hypertrophy</td>
<td>pes cavus</td>
</tr>
<tr>
<td>anemia</td>
<td>muscle pain</td>
<td>short stature disorder</td>
</tr>
<tr>
<td>autoimmune state</td>
<td>muscle weakness</td>
<td>skull finding</td>
</tr>
<tr>
<td>bacterial infectious disease</td>
<td>occipital meningocele</td>
<td>talipes equinovarus</td>
</tr>
<tr>
<td>bleeds easily</td>
<td>predisposed to startle</td>
<td>tall stature</td>
</tr>
</tbody>
</table>

Home Login (admin only)
Genes

1,439 Genes Match the brother and sister’s Symptoms

1,439 diseases found

searched for: congenital anomaly of lung, hydrops fetalis, nail finding, congenital anomaly of ear, dysmorphic facies, muscle weakness, talipes equinovarus

new search

<table>
<thead>
<tr>
<th>gene</th>
<th>search term(s)</th>
<th>disease(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>muscle weakness</td>
<td>ACHALASIA-ADDISONIANISM-ALACRIMA SYNDROME</td>
</tr>
<tr>
<td>ABCA12</td>
<td>dysmorphic facies</td>
<td>ICHTHYOSIS CONGENITA, HARLEQUIN FETUS TYPE</td>
</tr>
<tr>
<td>ABCA3</td>
<td>congenital anomaly of lung</td>
<td>SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 3</td>
</tr>
<tr>
<td>ACAD9</td>
<td>muscle weakness</td>
<td>DEFICIENCY OF ACYL-CoA DEHYDROGENASE FAMILY MEMBER 9</td>
</tr>
<tr>
<td>ACADL</td>
<td>muscle weakness</td>
<td>ACYL-CoA DEHYDROGENASE, LONG-CHAIN, DEFICIENCY OF</td>
</tr>
<tr>
<td>ACADM</td>
<td>muscle weakness</td>
<td>ACYL-CoA DEHYDROGENASE, MEDIUM-CHAIN, DEFICIENCY OF</td>
</tr>
<tr>
<td>ACADVL</td>
<td>muscle weakness</td>
<td>ACYL-CoA DEHYDROGENASE, VERY LONG-CHAIN, DEFICIENCY OF</td>
</tr>
<tr>
<td>ADAMTSL2</td>
<td>dysmorphic facies</td>
<td>GELEOPHYSIC DYSPLASIA</td>
</tr>
<tr>
<td>ADCK3</td>
<td>muscle weakness</td>
<td>COENZYME Q10 DEFICIENCY</td>
</tr>
<tr>
<td>AGL</td>
<td>dysmorphic facies, muscle weakness</td>
<td>GLYCOCEN STORAGE DISEASE III</td>
</tr>
<tr>
<td>AHI1</td>
<td>dysmorphic facies</td>
<td>JOUBERT SYNDROME 3</td>
</tr>
<tr>
<td>ALG1</td>
<td>dysmorphic facies</td>
<td>CONGENITAL DISORDER OF GLYCOSYLATION, TYPE Ik</td>
</tr>
<tr>
<td>ALG12</td>
<td>dysmorphic facies</td>
<td>CONGENITAL DISORDER OF GLYCOSYLATION TYPE Ig</td>
</tr>
<tr>
<td>ALG2</td>
<td>muscle weakness</td>
<td>CONGENITAL DISORDER OF GLYCOSYLATION TYPE II</td>
</tr>
<tr>
<td>ALG3</td>
<td>dysmorphic facies</td>
<td>CONGENITAL DISORDER OF GLYCOSYLATION, TYPE Id; CDG1D</td>
</tr>
<tr>
<td>ALPL</td>
<td>dysmorphic facies</td>
<td>HYPOPHOSPHATASIA, CHILDHOOD</td>
</tr>
<tr>
<td>ALS2</td>
<td>muscle weakness</td>
<td>JUVENILE AMYOTROPHIC LATERAL SCLEROSIS 2</td>
</tr>
<tr>
<td>AMT</td>
<td>muscle weakness</td>
<td>GLYCINE ENCEPHALOPATHY</td>
</tr>
<tr>
<td>ANTXR2</td>
<td>dysmorphic facies</td>
<td>HYALINOSIS, INFANTILE SYSTEMIC</td>
</tr>
<tr>
<td>APTX</td>
<td>muscle weakness</td>
<td>ATAXIA, EARLY-ONSET, WITH oculomotor apraxia AND HYPOALBUMINEMIA</td>
</tr>
</tbody>
</table>
24-hour Medical Genome Sequencing

Clock

0.0
- Identify newborn who may benefit
- Parental consent, DNA sample

3.0
- Sonication/ PCR-free Library Prep
- Clinical finding entry: SSAGA

21.0
- HiSeq 2500 2x101 cycles x 140Gbp

Decreased from 11 days to 18 hours
18 hour 2 x 101 cycle sequence quality

Q score distribution

- **Omni**
 - 26,743
 - 2,296,369
- **WGS**
 - 43,882
 - 2.36M Omni5 snp chip locations
24-hour Medical Genome Sequencing

0.0
• Identify newborn who may benefit
• Parental consent, DNA sample

3.0
• Sonication/ PCR-free Library Prep
• Clinical finding entry: SSAGA

21.0
• HiSeq 2500 2x101 cycles x 140Gbp

23.9
• Sequence alignment to reference, variant detection, genotyping: iSAAC
• Variant annotation: RUNES

Decreased from 24 hours to 3 hours
Finding Needles in a haystack = finding disease-causing variants in a genome

<table>
<thead>
<tr>
<th></th>
<th>MG12-1259</th>
<th>MG12-1259</th>
<th>Mother</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing time (hours)</td>
<td>26.5</td>
<td>25.5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Aligned nucleotides</td>
<td>111 GB</td>
<td>128 GB</td>
<td>115 GB</td>
<td>112 GB</td>
</tr>
<tr>
<td>Depth of coverage</td>
<td>32.7</td>
<td>35.7</td>
<td>33.1</td>
<td>32.8</td>
</tr>
<tr>
<td>Total Nucleotide Variants</td>
<td>3,734,022</td>
<td>3,761,733</td>
<td>3,766,638</td>
<td>3,700,788</td>
</tr>
</tbody>
</table>
Standardized Variant Annotation by RUNES
(Rapid Understanding of Nucleotide variant Effect Software)

Each Variant → RUNES Standardized annotation → American College of Medical Genetics Pathogenicity Classification → Pathology Interpretation

- affected gene(s)/transcript(s)/ protein(s)
- NCBI Gene
- reference and variant codons
- reference and variant AA
- cDNA, CDS and AA position(s)
- SIFT
- POLYPHEN2
- BLOSUM
- dbSNP rsID
- dbSNP minor allele frequency
- HGMD cross reference
- Splicing effects
- OMIM cross reference
- Translation impact
- Frame shift
- CMH allele frequency
American College of Medical Genetics variant pathogenicity categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Previously reported, recognized cause of the disorder</td>
<td>HGMD variation, dbSNP Snp CORE</td>
</tr>
<tr>
<td>2</td>
<td>Novel, of a type expected to cause the disorder</td>
<td>loss of initial premature stop codon, disruption of whole transcript, frameshifting, disruption of CDS/intron, overlap with non-synonymous in-frame insertion, disruption of overlap with</td>
</tr>
<tr>
<td>3</td>
<td>Novel, may or may not be causative</td>
<td></td>
</tr>
</tbody>
</table>
24-hour Medical Genome Sequencing

Clock

0.0
• Identify newborn who may benefit
• Parental consent, DNA sample

3.0
• Sonication/ PCR-free Library Prep
• Clinical finding entry: SSAGA

21.0
• HiSeq 2500 2x101 cycles x 140Gbp

23.9
• Secondary analysis: iSAAC
• Tertiary analysis: RUNES

24.0
• VIKING-assisted interpretation
• Provisional report

Decreased from 1 month to 10 minutes
VIKING: Brother and Sister Genomes

Pulls up diseases and genes

1% allele frequency cutoff

VIKING
Variant Integration and Knowledge Interpretation in Genomes

- Integrates SSAGA and RUNES outputs
- Clusters variants on a gene-by-gene basis
- Dynamic filtering by interpreter
Sanger Confirmation of NEB Mutations

c.18786 C>G (p.Tyr4561X)
c.18981 C>G (p.Tyr6327X)

- Very unusual presentation of Nemaline Myopathy Type 2—would likely not have been chosen for Sanger sequencing
Benefits of rapid diagnosis of genetic diseases

- Gives an answer to the family: Ends uncertainty, guilt
- Genetic counseling of risk of recurrence
- ~500 genetic diseases have treatments
- Rules out diseases, avoiding unnecessary treatment
- Occupational therapy, physical therapy, special education, social work, life planning, support groups
Proof of Concept to Reality – April 2013

• Elevated maternal α-fetoprotein at 16 weeks gestation
• Fetal MRI: omphalocele, right hydronephrosis, large left hydrocele, curvature of thoracolumbar spine
• Delivered in CMH materno-fetal health center
• Admitted to NICU for treatment of giant ruptured omphalocele.
• Normal testing: Beckwith Wiedemann syndrome, karyotype and microarray
• At 2 months, elevated transaminases progressed to acute liver failure with an increased PT and PTT
Family consented 4/10; proband findings 4/13; father 4/18; mother 4/21

487 proband compound het PRF1 p.Ala437Val (rare, highly conserved, predicted to be damaging) and p.Ala91Val (8% MAF but pathogenic in presence of 2nd mutation)
488 mother: het p.Ala437Val
489 father: het p.Ala91Val
Criteria for clinical diagnosis of HLH

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fever</td>
<td>No</td>
</tr>
<tr>
<td>2. Hepatomegaly or splenomegaly</td>
<td>Modest splenomegaly</td>
</tr>
<tr>
<td>3. Cytopenia: hemoglobin<9 g/dL, platelets <100,000/mm³, ANC <1000 (need 2)</td>
<td>Yes</td>
</tr>
<tr>
<td>4. Serum ferritin >500 ng/mL</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Serum triglyceride >265 mg/dL or fibrinogen <150 mg/mL</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Absent/decreased natural killer cell assay</td>
<td>Yes, after Dx</td>
</tr>
<tr>
<td>7. Soluble IL2 receptor (CD25) >2,400 units/mL</td>
<td>No</td>
</tr>
<tr>
<td>8. Hemophagocytosis without malignancy</td>
<td>Not done</td>
</tr>
</tbody>
</table>

- Confirmatory testing
 - NK activity: none
 - Perforin expression reduced

- Meds changed, steroids & IV Ig continued
16 of 326 Patients Had a Change in Diagnosis

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Prior gene tests</th>
<th>Old Diagnosis</th>
<th>New Diagnosis</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Change in Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joubert syndrome</td>
<td>2</td>
<td>AHI1 (het mutation; het VUS)</td>
<td>RPRIP1L</td>
<td>p.Asn1202IlefsX4</td>
<td>p.Lys1007X</td>
<td>Genetic counseling</td>
</tr>
<tr>
<td>Hypotonia, seizures, skin biopsy, elevated VLCFA</td>
<td>7</td>
<td>PEX nos</td>
<td>PEX5</td>
<td>p.Arg572Trp</td>
<td>p.Arg572Trp</td>
<td>Genetic counseling</td>
</tr>
<tr>
<td>Hydrocephalus, spasticity, encephalopathy, hypotonia</td>
<td>7</td>
<td>“mitochondrial”</td>
<td>PDHA1</td>
<td>p.Arg270X</td>
<td>n/a</td>
<td>Ketogenic diet</td>
</tr>
<tr>
<td>ID, behavior disorder, seizures</td>
<td>3</td>
<td>Carnitine deficiency</td>
<td>GAMT</td>
<td>c.327G>A</td>
<td>c.299_311fs</td>
<td>Creatinine supplement</td>
</tr>
<tr>
<td>ID, seizures, dysmorphic, consanguinity</td>
<td>3</td>
<td>none</td>
<td>SNAP29</td>
<td>c.520+1G>T</td>
<td>c.520+1G>T</td>
<td></td>
</tr>
<tr>
<td>Cockayne syndrome / trichothiodystrophy</td>
<td>1</td>
<td>ERCC6; poss. deletion</td>
<td>ERCC2</td>
<td>p.Leu461Val</td>
<td>p.Asp655Tyr</td>
<td>Genetic counseling</td>
</tr>
<tr>
<td>Seizures, poor vision, behavior, consanguinity</td>
<td>1</td>
<td>CLN6 het</td>
<td>CLN8</td>
<td>p.Cys174Ser</td>
<td>p.Cys174Ser</td>
<td>Genetic counseling</td>
</tr>
<tr>
<td>Anemia</td>
<td>1</td>
<td>HBA1</td>
<td>HBB</td>
<td>p.Glu27Lys</td>
<td>n/a</td>
<td>Genetic counseling</td>
</tr>
<tr>
<td>Sanfilippo syndrome</td>
<td>none</td>
<td>none</td>
<td>SGSH</td>
<td>p.Arg150Gln</td>
<td>p.Ser66Leu</td>
<td></td>
</tr>
<tr>
<td>Congenital Myopathy; developmental delay; vent dependent</td>
<td>5</td>
<td>none</td>
<td>IGHMBP2</td>
<td>p.Leu361Pro</td>
<td>p.Arg71X</td>
<td></td>
</tr>
<tr>
<td>Congenital cardiomyopathy; death</td>
<td>1</td>
<td>LCHAD</td>
<td>VLCAD</td>
<td>p.Arg59Trp</td>
<td>p.Phe214Val</td>
<td>Low LCFA diet</td>
</tr>
<tr>
<td>Hypotonia, per. neuropathy, IUGR</td>
<td></td>
<td></td>
<td>IGHMBP2</td>
<td>p.Glu382Lys</td>
<td>p.Glu382Lys</td>
<td></td>
</tr>
</tbody>
</table>
Medical Genome Sequencing

Summary:

- 15 affected children, 25 individuals, 11 families
- Definite diagnosis for 7 patients
- Likely diagnosis for 3 patients
 - novel disease gene in 2 sibs (*BCL9L*)
 - novel disease presentation (*GJB2*)
- 2 possible diagnoses: choanal atresia
- No diagnosis in 3
- 1 patient had change in treatment

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description of illness</th>
<th>Causal Gene</th>
<th>Pattern of Inheritance</th>
<th>Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDT2</td>
<td>Tay Sachs Disease</td>
<td>HEXA</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>UDT173</td>
<td>Menkes disease</td>
<td>ATP7A</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH64</td>
<td>Erosive dermatitis</td>
<td>GJB2</td>
<td>De novo dominant</td>
<td>Y</td>
</tr>
<tr>
<td>CMH76</td>
<td>Mitochondrial disorder</td>
<td>?</td>
<td>?</td>
<td>N</td>
</tr>
<tr>
<td>CMH172</td>
<td>Neonatal epilepsy</td>
<td>BRAT1</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH184</td>
<td>Heterotaxy</td>
<td>BCL9L</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH185</td>
<td>Heterotaxy</td>
<td>BCL9L</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH186</td>
<td>Mother, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH202</td>
<td>Father, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH222</td>
<td>Choanal atresia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>CMH223</td>
<td>Choanal atresia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>CMH224</td>
<td>Mother, Unaffected</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>MG-12-12258</td>
<td>Lethal Multiple Pterygium syn.</td>
<td>NEB</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>MG-12-12259</td>
<td>Lethal Multiple Pterygium syn.</td>
<td>NEB</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH248</td>
<td>Mother, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH249</td>
<td>Father, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH488</td>
<td>Liver failure, omphalocele</td>
<td>PRF1</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH488</td>
<td>Mother, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
<tr>
<td>CMH489</td>
<td>Father, Carrier</td>
<td>Carrier</td>
<td>Recessive</td>
<td>Y</td>
</tr>
</tbody>
</table>
TaGSCAN - Targeted Gene Sequencing & Custom Analysis

- CLIA-lab test for 514 genes and 768 genetic diseases
 - Metabolic, mitochondrial, neurologic
 - Not arrhythmias, deafness

- All mutation harboring regions of genes

- Uses SSAGA to limit analysis to relevant disease genes
 - Decreased VUS, incidental findings, carrier status

- Cost $1000 - $3180, 3-8 week time-to-result
TaGSCAN Clinical Validation

- 326 archived CMH samples
 - Clinically sequenced with known mutations
 - Blinded TaGSCAN
 - 167 of 175 mutations detected (95%)
 - 99 of 110 samples with both pathogenic alleles (90%)

- 2 samples, compared with Omni5 SNP chip
 - Analytic sensitivity: 95%
 - Specificity: 99.8%

- Day-to-day precision: 99.3%
Two sisters with progressive cerebellar atrophy

<table>
<thead>
<tr>
<th></th>
<th>CMH000001</th>
<th>CMH000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>9 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Motor milestones</td>
<td>normal</td>
<td>delayed</td>
</tr>
<tr>
<td>Speech</td>
<td>normal</td>
<td>delayed</td>
</tr>
<tr>
<td>Ataxia</td>
<td>4-5 yrs</td>
<td>2 yrs</td>
</tr>
<tr>
<td>Loss of motor skills</td>
<td>4-5 yrs</td>
<td>No</td>
</tr>
<tr>
<td>Wheelchair reliance</td>
<td>Yes, 8 yrs</td>
<td>No</td>
</tr>
<tr>
<td>Progressive cerebellar atrophy</td>
<td>Yes, 6 yrs</td>
<td>Yes, 4 yrs</td>
</tr>
</tbody>
</table>
Pyramid of perplexity

Pyruvate Decarboxylase Deficiency DNA testing $1600
GFAP gene sequencing for Alexander disease $1300
Array comparative genomic hybridization $1500
DNA testing for ataxia telangiectasia $1448
DNA testing for Freidreich’s ataxia $282
Lactic acid level: 4.3 elevated (x2) $90
Pyruvate: 0.23 elevated (x3) $1074
MELAS/MERRF DNA testing $864
Urine organic acids (x2) $1188
Karyotyping: 46,XX $517
Acylcarnitine profile $134
Ammonia (plasma) $23
Urine amino acids $267
Brain MRI x2 $7784
Vitamin E level $170
Brain MRS $4204
TSH, free T4 $74
Copper $149
AFP $177
BMP $13
LFTs $9
CBC $7

5 year diagnostic work-up: $23,000, no molecular diagnosis
Diagnosis: Ataxia with oculomotor apraxia, type 1

Both have homozygous mutations that create a premature stop codon in *aprataxin*

The parents were unaffected carriers

Actionable genomics

- *Aprataxin* mutations cause CoQ$_{10}$ deficiency

- 19¢ CoQ10 pill daily

- After 4 months
 - report better stamina
 - but worse by rating scale

Secondary. Patients with all three forms of CoQ$_{10}$ deficiency have shown clinical improvements after initiating oral CoQ$_{10}$ supplementation. Thus, early diagnosis is of critical importance in the management of these patients.

Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1

Continuing Development

• Analytic sensitivity trumps diagnostic specificity
 – False negative variant calls more problematic than false positives

• Improved methods for detecting nucleotide variation
 – large in/dels > 40 nt,
 – variants in genes with pseudogenes,
 – triplet repeat expansions, CNVs, inversions etc.

• Optimal patient selection criteria

• Diagnostic design optimization
 – Affected WGS, 1st parent WGS during proband analysis, 2nd if needed